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Optimization over multi-order cones

Baha M. Alzalg∗ and K. A. Ariyawansa†

Abstract

In this paper we propose multi-order cone programs (MOCPs) as a new class of convex
nonlinear optimization problems that includes linear programs, (convex) quadratic programs,
second-order cone programs and, more generally, pth-order cone programs as special cases. In
MOCPs we minimize a linear objective function over the intersection of an affine set and a
product of multi-order cones. We refer to them as deterministic multi-order cone programs
(DMCOPs) since data defining them are deterministic. We present the definition of DMOCPs
in primal and dual standard forms. Then we introduce two-stage stochastic multi-order cone
programs (SMOCPs) (with recourse) to handle uncertainty in data defining DMOCPs and de-
terministic mixed integer multi-order cone programs (DMIMOCPs) to handle DMOCPs with
integer-valued variables. We describe an applicational setting and present DMOCP, SMOCP,
and DMIMOCP models arising in that setting.

Keywords: Linear programming; Stochastic programming; Recourse; Second-order cone pro-
gramming; Mixed integer programming

1 Introduction

Semidefinite programming [16, 13] problems were extensively studied during the late 1990s as a
class of optimization problems. They are extensions of linear programs and provide novel modeling
capabilities. Interior point algorithms could be derived for them (often utilizing their symbolic
similarities to linear programs).

Ariyawansa and Zhu [5] (see also [10]) presented stochastic semidefinite programs that extended
stochastic linear programs [17, 6], and allowed the derivation of elegant interior point algorithms
[4, 10].

It soon became apparent [9, 1] that almost all applications of semidefinite programs indeed
lead to a subset of semidefinite programs termed second order cone programs. We refer to them as
deterministic second order cone programs (DSOCPs) because they are defined using deterministic
data. In DSOCP we minimize a linear function over the intersection of an affine set and a Cartesian
product of second order cones.

In this paper, we present three extensions of DSOCPs. First, we present primal and dual forms
of (deterministic) multi-order cone programs (DMOCPs) in which we minimize a linear function
over a Cartesian product of pth-order cones (we allow different p values for different cones in the
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(balzalg@math.wsu.edu). The material in this paper is part of the doctoral dissertation of this author in
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product). We present generic applications that extend those in [1, Section 2.2]. We also present a
glimpse of the duality theory that we are developing in [2] for DMOCPs.

Second, we present two-stage stochastic multi-order cone programs (SMOCPs). SMOCPs are
a way of handling uncertainty in data defining DMOCPs. Then we demonstrate that stochastic
linear programs and stochastic quadratic programs are special cases of SMOCPs.

Our third extension is introduced to handle modeling situation in which some of the variables in
an optimization problem can only take integer values, or even 0 or 1. This leads to (deterministic)
mixed integer multi order cone Programs (DMIMOCPs) and 0-1 deterministic multi order cone
programs (0-1DMOCPs).

We then demonstrate how decision making problems associated with facility location problems
lead to a DMOCP model, an SMOCP model, a 0-1DMOCP model, and a DMIMOP model.

We begin with an introduction to our notation.

1.1 Notations

We begin by introducing some notations we use in the sequel.
Let R

m×n and R
n∨n denote the vector spaces of real m× n matrices and real symmetric n × n

matrices respectively. For U, V ∈ R
n∨n, we write U � 0 (U ≻ 0) to mean that U is positive

semidefinite (positive definite), and U � V or V � U to mean that U − V � 0.
All vectors we use are column vectors with superscript T indicating transposition. We use “,”

for adjoining vectors and matrices in a row, and use “;” for adjoining them in a column. So, for
example, if x, y, and z are vectors, we have:





x

y

z



 = (xT,yT,zT)T = (x;y;z).

If A ⊆ R
k and B ⊆ R

l, then the Cartesian product of A× B := {(x;y) : x ∈ A and y ∈ B}.
For each vector x ∈ R

k indexed from 0, we write x̄ for the sub-vector consisting of entries 1
through k − 1; therefore x = (x0; x̄).

Given p ≥ 1, the pth-order cone of dimension n is defined as Qn
p := {x = (x0; x̄) ∈ R × R

n−1 :
x0 ≥ ||x̄||p} where || · ||p denotes the p-norm. The cone Qn

p is convex, pointed, closed and with a
nonempty interior (see, for example, [18]). As special cases, when p = 2 we obtain the second-order
cone (also known as the quadratic, Lorentz, or the ice-cream cone) of dimension n, and when p = 1
or ∞, Qn

p is a polyhedral cone.

We write x �
〈n〉
〈p〉

0 to mean that x ∈ Qn
p , and x �

〈n〉
〈p〉

y to mean that x − y �
〈n〉
〈p〉

0.

Given 1 ≤ pi ≤ ∞ for i = 1, 2, · · · , r. Let Q
〈n1,n2,··· ,nr〉
〈p1,p2,··· ,pr〉

:= Qn1
p1

× Qn2
p2

× · · · × Qnr

pr
. We

write x �
〈n1,n2,··· ,nr〉
〈p1,p2,··· ,pr〉

0 to mean that x ∈ Q
〈n1,n2,··· ,nr〉
〈p1,p2,··· ,pr〉

and x �
〈n1,n2,··· ,nr〉
〈p1,p2,··· ,pr〉

y to mean that x −

y �
〈n1,n2,··· ,nr〉
〈p1,p2,··· ,pr〉

0.

It is immediately seen that, for every vector x ∈ R
n where n =

∑r
i=1 ni, x �

〈n1,n2,··· ,nr〉
〈p1,p2,··· ,pr〉

0 if

and only if x is partitioned conformally as x = (x1;x2; · · · ;xr) and xi �
〈ni〉
〈pi〉

0 for i = 1, 2, · · · , r.
For simplicity, we write:

• Qn
p as Qp and x �

〈n〉
〈p〉 0 as x �〈p〉 0 when n is known from the context;
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• Q
〈n1,n2,··· ,nr〉
〈p1,p2,··· ,pr〉

as Q〈p1,p2,··· ,pr〉 and x �
〈n1,n2,··· ,nr〉
〈p1,p2,··· ,pr〉

0 as x �〈p1,p2,··· ,pr〉
0 when n1, n2, · · · , nr

are known from the context;

• x �〈p, p, · · · , p
︸ ︷︷ ︸

r times

〉 0 as x �r〈p〉 0;

• x �〈2〉 0 as x � 0; and x �r〈2〉 0 as x �r 0 when the problem includes only (linear and)
second-order cone constraints.

Note that, for every vector x ∈ R
n =

r times
︷ ︸︸ ︷

R
k × R

k × · · · × R
k,x �r〈p〉 0 implies that x is partitioned

regularly as x = (x1;x2; · · · ;xr) and each subvector xi lies in the pth-order cone of dimension
k = n/r for i = 1, 2, · · · , r. In this case, if n = r and p = 2, then xi ∈ Q1

2 = {t ∈ R : t ≥ 0} for each
i = 1, 2, · · · , n. So x �n 0 means the same as x ≥ 0, i.e., x lies in the nonnegative orthant of R

n.

2 Definition of a DMOCP

Let r ≥ 1 be an integer, and p1, p2, · · · , pr are such that 1 ≤ pi ≤ ∞ for i = 1, 2, · · · , r. Let
m,n, n1, n2, · · · , nr be positive integers such that n =

∑r
i=1 ni. Then we define a DMOCP in

primal standard form as

min cTx

(P ) s.t. A x = b

x �〈p1,p2,··· ,pr〉
0

where A ∈ R
m×n, b ∈ R

m and c ∈ R
n constitute given data, x ∈ R

n = R
n1 × R

n2 × · · · × R
nr is

the decision variable. We define a DMOCP in dual standard form as

max bTy

(D) s.t. ATy + z = c

z �〈q1,q2,··· ,qr〉
0

where y ∈ R
m and z ∈ R

n = R
n1 × R

n2 × · · · × R
nr are the decision variables, q1, q2, · · · , qr are

integers such that 1 ≤ qi ≤ ∞ for i = 1, 2, · · · , r.
If (P) and (D) are defined by the same data, and qi is conjugate to pi, in the sense that

1/pi +1/qi = 1 for i = 1, 2, · · · , r, then we can prove relations between (P) and (D) (see Subsection
2.2) justify referring to (D) as the dual of (P) and vice versa.

2.1 Special cases of DMOCPs

A deterministic pth-order cone programming (see also [12]) (DPOCP) problem in primal standard
form is

min cTx

s.t. A x = b

x �r〈p〉 0

(1)
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where m,n, n1, n2, · · · , nr are positive integers such that n =
∑r

i=1 ni, p ∈ [1,∞], A ∈ R
m×n,

b ∈ R
m and c ∈ R

n constitute given data, x ∈ R
n is the primal variable. Clearly, DSOCPs are a

special case of DMOCPs with pi = p ≥ 1 for all i = 1, 2, · · · , r. According to (D), the dual problem
associated with DPOCP (1) is

max bTy

s.t. ATy + z = c

z �r〈q〉 0

(2)

where y ∈ R
m and z ∈ R

n are the dual variables and q is conjugate to p.
Deterministic second-order cone programs (DSOCPs) are a special case of DPOCPs (and hence

of DMOCPs) which occurs when p = 2 in (1) (and hence q = 2 in (2)). A DSOCP problem in
primal standard form (see [1]) is

min cTx

s.t. A x = b

x �r 0

(3)

and its dual problem (see [1])

max bTy

s.t. ATy + z = c

z �r 0

(4)

where A ∈ R
m×n, b ∈ R

m and c ∈ R
n constitute given data, x ∈ R

n is the primal variable, and
y ∈ R

m and z ∈ R
n are the dual variables.

Since DSOCP is a special case of DMOCP, all problems that can be formulated as DSOCPs, such
as DLPs (the DSOCP problems (3) and (4) reduce to DLP problems when r = n), strictly convex
deterministic quadratic programs (DQPs), convex quadratically constrained quadratic programs
(QCQPs), and problems with hyperbolic constraints (see [1, 9]) are special cases of DSOCPs and of
DMOCPs. The survey paper of Lobo, et al. [9] discusses DSOCPs with a number of applications
in many areas including a variety of engineering applications.

2.1.1 Examples: Norm minimization problems

In [1] Alizadeh and Goldfarb presented DSOCP formulations of three norm minimization problems
where the norm is the Euclidean norm. In this subsection we show how extensions of these three
problems where we use arbitrary p norms lead to DMOCPs. Let vi = Aix + bi ∈ R

ni−1, i =
1, 2, · · · , r. The following norm minimization problems can be cast as DMOCPs:

1. Minimization of the sum of norms:
The problem min

∑r
i=1 ||vi||pi

can be formulated as

min
∑r

i=1 ti
s.t. Aix + bi = vi, i = 1, 2, · · · , r

(t1;v1; t2;v2; · · · ; tr;vr) �〈p1,p2,··· ,pr〉
0
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2. Minimization of the maximum of norms:
The problem min max1≤i≤r ||vi||pi

can be expressed as the DMOCP problem

min t
s.t. Aix + bi = vi, i = 1, 2, · · · , r

(t;v1; t;v2; · · · ; t;vr) �〈p1,p2,··· ,pr〉
0

3. Minimization of the sum of the k largest norms:
More generally, the problem of minimizing the sum of the k largest norms can also be cast as
DMOCPs. Let the norms ||v[1]||p[1]

, ||v[2]||p[2]
, · · · , ||v[r]||p[r]

be the norms ||v1||p1 , ||v2||p2 , · · · , ||vr||pr

sorted in nonincreasing order. Then the problem
∑r

i=1 ||v[i]||p[i]
can be formulated as (see

also [1] or [9] and the related references contained therein)

min
∑r

i=1 si + kt
s.t. Aix + bi = vi, i = 1, 2, · · · , r

(s1 + t;v1; s2 + t;v2; · · · ; sr + t;vr) �〈p1,p2,··· ,pr〉
0

si ≥ 0

2.2 Duality

Since DMOCPs are a class of convex optimization problems, we can develop a duality theory for
them. A forthcoming paper [2] presents such a duality theory. Here we indicate weak and strong
duality for the pair (P, D) as justification for referring to them as a primal dual pair.

We first show that the dual of the pth-order cone of dimension n is the qth-order cone of
dimension n, where q is the conjugate to p. For any cone K, the dual cone K∗ is defined by
K∗ := {y ∈ R

n : yTx ≥ 0,∀x ∈ K}.

Lemma 1 Qp
∗ = Qq, where 1 ≤ p ≤ ∞ and q is the conjugate to p. More generally, Q〈p1,p2,··· ,pr〉

∗ =
Q〈q1,q2,··· ,qr〉, where 1 ≤ pi ≤ ∞ and qi is the conjugate to pi for i = 1, 2, · · · , r.
Proof. We assume that Qp ⊂ R

n. The proof of the second part trivially follows from the first
part. To prove the first part, we first prove that Qq ⊆ Qp

∗. Let x = (x0; x̄) ∈ Qq, we show
that x ∈ Qp

∗ by verifying that xTȳ ≥ 0 for any y ∈ Qp. So let y = (y0; ȳ) ∈ Qp. Then
xTy = x0 y0 + x̄Tȳ ≥ ||x̄||q||ȳ||p + x̄Tȳ ≥ |x̄Tȳ| + x̄Tȳ ≥ 0, where the first inequality follows
from the fact that x ∈ Qq and y ∈ Qp and the second one from Hölder’s inequality. Now we
show Qp

∗ ⊆ Qq. Let y = (y0; ȳ) ∈ Qp
∗, we show that y ∈ Qq by verifying that y0 ≥ ||ȳ||q. This

is trivial if ȳ = 0 or p = ∞. If ȳ 6= 0 and 1 ≤ p < ∞, let u := (y1
p/q; y2

p/q; · · · ; yn−1
p/q) and

consider x := (||u||p;−u) ∈ Qp. Then by using Hölder’s inequality, where the equality is attained,
we obtain 0 ≤ xTy = ||u||p y0 − uTȳ = ||u||p y0 − ||u||p||ȳ||q = ||u||p (y0 − ||ȳ||q). This gives that
y0 ≥ ||ȳ||q. 2

It follows from this lemma that the second-order cone is self-dual, i.e., Q2
∗ = Q2. From this

lemma we also deduce that the pth-order cone is reflexive, i.e., Qp
∗∗ = Qp, and more generally, also

Q〈p1,p2,··· ,pr〉 is reflexive. On the basis of this fact, it is natural to infer that the dual of the dual is
the primal. Using the above lemma, we can prove the following weak duality property.
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Theorem 1 (Weak duality) If x is any primal feasible solution of (P) and (y,z) is any dual feasible
solution of (D), then the duality gap cTx − bTy = xTz ≥ 0.
Proof. Note that cTx−bTy = (ATy+z)Tx−bTy = yTAx+zTx−yTb = yT(Ax−b)+zTx = xTz.
Since x ∈ Q〈p1,p2,··· ,pr〉 and z ∈ Q〈q1,q2,··· ,qr〉 = Q〈p1,p2,··· ,pr〉

∗, we conclude that xTz ≥ 0. 2

We can now apply the duality relations [11, Theorem 4.2.1] to obtain:

Theorem 2 (Strong duality) Assume the interior of (P) to be not empty and the objective value
of (P) to be bounded below on the feasible region. Then (D) is solvable and the optimal objective
value p∗ of (P) and the dual objective value d∗ satisfy the relation p∗ = d∗.

3 Definition of an SMOCP

In this section we define two-stage stochastic multi-order cone programs (SMCOPs) with recourse
based on DMOCP (P) analogous to the way SLPs is defined based on DLPs. Let r1, r2 ≥ 1 be
integers. For i = 1, 2, · · · , r1 and j = 1, 2, · · · , r2, let p1i, p2j ∈ [1,∞] and m1,m2, n1, n2, n1i, n2j

be positive integers such that n1 =
∑r1

i=1 n1i and n2 =
∑r2

i=1 n2j. An SMOCP with recourse in
primal standard form is defined based on deterministic data A ∈ R

m1×n1, b ∈ R
m1 and c ∈ R

n1 and
random data T ∈ R

m2×n1,W ∈ R
m2×n2 ,h ∈ R

m2 and d ∈ R
n2 whose realizations depend on an

underlying outcome ω in an event space Ω with a known probability function P . Given this data,
an SMOCP with recourse in primal standard form is

min cTx + E [Q(x, ω)]
s.t. Ax = b

x�〈p11,p12,··· ,p1r1〉
0

(5)

where x ∈ R
n1 = R

n11 × R
n12 × · · · × R

n1r1 is the first-stage decision variable and Q(x, ω) is the
minimum of the problem

min d(ω)Ty

s.t. T (w)x + W (ω)y = h(ω)
y�〈p21,p22,··· ,p2r2 〉

0

(6)

where y ∈ R
n2 = R

n21 × R
n22 × · · · × R

n2r2 is the second-stage variable and

E[Q(x, ω)] :=

∫

Ω
Q(x, ω)P (dω).

3.1 Special cases of SMOCPs

In this part we present some important special cases of SMOCPs. Stochastic pth-order cone pro-
grams (SPOCPs) are a special case of SMOCPs which occurs when p1i = p2j = p ≥ 1 for all
i = 1, 2, · · · , r1 and j = 1, 2, · · · , r2 in (5, 6). An SPOCP problem therefore is

min cTx + E [Q(x, ω)]
s.t. Ax = b

x�r1〈p〉
0

(7)

6



where x ∈ R
n1 = R

n11 × R
n12 × · · · × R

n1r1 is the first-stage decision variable and Q(x, ω) is the
minimum of the problem

min d(ω)Ty

s.t. T (w)x + W (ω)y = h(ω)
y�r2〈p〉

0

(8)

where y ∈ R
n2 = R

n21 × R
n22 × · · · × R

n2r2 is the second-stage variable and

E[Q(x, ω)] :=

∫

Ω
Q(x, ω)P (dω).

Stochastic second-order cone programs (SSOCPs) are a special case of SPOCPs (and hence of
SMOCPs) which occurs when p = 2 in (7, 8). An SSOCP problem (see also [10]) is

min cTx + E [Q(x, ω)]
s.t. Ax = b

x�r1
0

(9)

where x ∈ R
n1 = R

n11 × R
n12 × · · · × R

n1r1 is the first-stage decision variable and Q(x, ω) is the
minimum of the problem

min d(ω)Ty

s.t. T (w)x + W (ω)y = h(ω)
y�r2

0

(10)

where y ∈ R
n2 = R

n21 × R
n22 × · · · × R

n2r2 is the second-stage variable and

E[Q(x, ω)] :=

∫

Ω
Q(x, ω)P (dω).

Note that when r1 = n1 and r2 = n2, SSOCP (9, 10) reduces to an SLP. So SLPs are a special
case of SSOCPs.

In the rest of this section, we will show that stochastic quadratic programs (SQPs) can also
be cast as SSOCPs. Our proof is parallel to the proof of the fact that DQPs is a subclass of
DSOCPs (see [1]). Recall that a two-stage SQP (with recourse) is defined based on deterministic
data C ∈ R

n1∨ n1 , C ≻ 0, c ∈ R
n1, A ∈ R

m1×n1 and b ∈ R
m1; and random data H ∈ R

n2∨ n2,H ≻
0,d ∈ R

n2, T ∈ R
m2×n1 ,W ∈ R

m2×n2 , and h ∈ R
m2 whose realizations depend on an underlying

outcome in an event space Ω with a known probability function P . Given this data, an SQP with
recourse is

min q1(x, ω) = xTCx + cTx + E[Q(x, ω)]
s.t. Ax = b

x ≥ 0

(11)

where x ∈ R
n1 is the first-stage decision variable, Q(x, ω) is the minimum of the problem

min q2(y, ω) = yTH(ω)y + d(ω)Ty

s.t. T (ω)x + W (ω)y = h(ω)
y ≥ 0

(12)

7



where y ∈ R
n2 is the second-stage variable, and

E[Q(x, ω)] :=

∫

Ω
Q(x, ω)P (dω).

Observe that the objective function of (11) can be written as (see §2 in [1]),

q1(x1, ω) = ||ū||2 + E[Q(x, ω)] −
1

4
cTC−1c where ū = C

1/2x +
1

2
C−1/2c.

Similarly, the objective function of (12) can be written as

q2(y, ω) = ||v̄||2 −
1

4
d(ω)TH(ω)−1d (ω) where v̄ = H(ω)

1/2y +
1

2
H(ω)−

1/2d(ω).

Thus, problem (11, 12) can be transformed into the SSOCP:

min u0

s.t. ū − C
1/2x = 1

2 C−1/2c

Ax = b

x ≥ 0, (u0; ū) � 0

(13)

where Q(x, ω) is the minimum of the problem

min v0

s.t. v̄ − H(ω)
1/2y = 1

2 H(ω)−
1/2d(ω)

T (ω)x + W (ω)y = h(ω)
y ≥ 0; (u0; v̄) � 0

(14)

where

E[Q(x, ω)] :=

∫

Ω
Q(x, ω)P (dω).

Note that both problems (the SQP problem and the SSOCP problem) will have the same
minimizers, but their optimal objective values are equal up to constants. More precisely, the
difference between the optimal objective values of (12) and (14) would be −1

2d(ω)TH(ω)−1 d(ω).
Consequently, the optimal objective values of (11, 12) and (13, 14) will differ by

−
1

2
cTC−1c −

1

2

∫

Ω

(

d(ω)T H(ω)−1d(ω)
)

P (dω).

4 Definitions of a DMIMOCP and a 0-1DMOCP

In this section we introduce two important related problems that result when decision variables
in an MOCP can only take integer values. Consider the DMOCP problem (P). If we require an
additional constraint that a subset of the variables have to attain 0-1 values, then we are interested
in optimization problem of the form
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min cTx

s.t. Ax = b

x�〈p1,p2,··· ,pr〉
0

xk ∈ {0, 1}, k ∈ Γ

where Γ ⊆ {1, 2, · · · , n}, the decision variable x ∈ R
n has some of its components xk (k ∈ Γ) with

integer values and bounded by αk, βk ∈ R. This class of optimization problems may be termed as
deterministic 0-1 multi-order cone programs (0-1DMOCPs).

A more general and interesting problem when in an DMOCP some variables can only take
integer values. If we are given the same data A, b, and c as in (P), then we are interested in the
problem of the form

min cTx

s.t. Ax = b

x�〈p1,p2,··· ,pr〉
0

xk ∈ [αk, βk]
⋂

Z, k ∈ Γ

(15)

where Γ ⊆ {1, 2, · · · , n}, the decision variable x ∈ R
n has some of its components xk (k ∈ Γ) with

integer values and bounded by αk, βk ∈ R. This class of optimization problems may be termed
as deterministic mixed integer multi-order cone programs (DMIMOCPs). The relationships among
DMIMOCPs, deterministic mixed integer pth-order cone programs (DMIPOCPs) (which occurs
when pi = p ≥ 1 for all i = 1, 2, · · · , r), deterministic mixed integer second-order cone programs
(DMISOCPs) [7] (which occurs when pi = 2 for all i = 1, 2, · · · , r), and deterministic mixed integer
linear programs (DMILCPs) (or deterministic mixed integer quadratic programs) are the same as
those among DMOCPs, DPOCPs, DSOCPs, and DMILPs (or DMIQPs), respectively.

We can also handle uncertainty in data defining DMIMOCPs by defining two-stage stochastic
mixed integer multi-order cone programs (SMIMCOPs) with recourse (which generalizes two-stage
stochastic mixed integer second-order cone programs [3]) based on DMIMOCP (15) analogous to
the way SMOCPs (5, 6) are defined based on DMOCPs (P). See Figure 1 which shows conceptual
relationships among the optimization problems over multi-order cones described above and their
special cases.

5 An application

Our application is four versions of the facility location problem (FLP). For these four versions we
present problem descriptions leading to a DMOCP model, an SMOCP model, a 0-1DMOCP model,
and a DMIMOCP model.

In FLPs we are interested in choosing a location to build a new facility or locations to build
multiple new facilities so that an appropriate measure of distance from the new facilities to existing
facilities is minimized. FLPs arise when decisions on locating airports, regional campuses, wireless
communications towers, etc. are to be made. There are different ways of classifying FLPs. Following
are some of these ways (see also [14]):

• We can classify FLPs based on the number of new facilities in the following sense: if we
add only one new facility then we get a problem known as a single facility location problem

9
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Figure 1: Conceptual relationships among the optimization problems over multi-order cones and
their special cases.

(SFLP), while if we add multiple new facilities instead of adding only one, then we get a more
general problem known as a multiple facility location problem (MFLP).

• Another way of classification is based on the distance measure used in the model between the
facilities. If we use the Euclidean distance then these problems are called Euclidean facility
location problems (EFLPs), if we use the rectilinear distance (also known as L1 distance,
city block distance, or Manhattan distance) then these problems are called rectilinear facility
location problems (RFLPs). Furthermore, in some applications we use both the Euclidean
and the rectilinear distances (based on the relationships between the pairs of facilities) as
the distance measures used in the model between the facilities to get a mixed of EFLPs and
RFLPs that we refer to as Euclidean-rectilinear facility location problems (ERFLPs).

• When the new facilities can be placed any place in solution space, the problem is called a
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continuous facility location problem (CFLP), but usually the decision maker needs the new
facilities to be placed at specific locations (called nodes) and not in any place in the solution
space. In this case the problem is called a discrete facility location problem (DFLP).

• In some applications, the locations of existing facilities cannot be fully specified because the
locations of some of them depend on information not available at the time when decision needs
to be made but will only be available at a later point in time. In this case, we are interested in
stochastic facility location problems (or abbreviated as stochastic FLPs). When the locations
of all old facilities are fully specified, FLPs are called deterministic facility location problems
(or abbreviated as deterministic FLPs).

FLPs have seen a great deal of recent research activity. For further details, consult the book
of Tompkins and et al. [14]. In particular, deterministic Euclidean facility location problems are
often cited as an application of deterministic second-order cone programs (see for example [15] and
[8]). Each one of the next subsections is devoted to a version of ERFLPs. Specifically, we consider
deterministic continuous Euclidean-rectilinear facility location problems (deterministic CERFLPs)
which leads to a DMOCP model, stochastic continuous Euclidean-rectilinear facility location prob-
lems (stochastic CERFLPs) which leads to an SMOCP model, deterministic discrete Euclidean-
rectilinear facility location problems (deterministic DERFLPs) which leads to a 0-1DMOCP model,
and deterministic ERFLPs with integrality constraints which leads to a DMIMOCP model.

5.1 Deterministic CERFLPs—A DMOCP model

In deterministic single ERFLPs, we are interested in choosing a location to build a new facility
among existing facilities so that this location minimizes the sum of a weighted (either Euclidean or
rectilinear) distance to all existing facilities.

Assume that we are given r + s existing facilities represented by the fixed points a1,a2, · · · ,ar,
ar+1,ar+2, · · · ,ar+s in R

n, and we plan to place a new facility represented by x so that we minimize
the weighted sum of the Euclidean distances between x and each of the points a1,a2, · · · ,ar and
the weighted sum of the rectilinear distances between x and each of the points ar+1,ar+2, · · · ,ar+s.
This leads us to the problem

min
∑r

i=1 wi ||x − ai||2 +
∑r+s

i=r+1 wi ||x − ai||1

or, alternatively, to the problem

min
∑r+s

i=1 wi ti

s.t. (t1;x − a1; · · · ; tr;x − ar) �r〈2〉 0

(tr+1;x − ar+1; · · · ; tr+s;x − ar+s) �s〈1〉 0

where wi is the weight associated with the ith existing facility and the new facility for i =
1, 2, . . . , r + s.

In deterministic multiple ERFLPs we add m new facilities, namely x1,x2, · · · ,xm ∈ R
n, instead

of adding only one. We have two cases depending whether or not there is an interaction among
the new facilities in the underlying model. If there is no interaction between the new facilities, we
are just concerned in minimizing the weighted sums of the distance between each one of the new
facilities and each one of the fixed facilities. In other words, we solve the following DMOCP model:
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min
∑m

j=1

∑r+s
i=1 wij tij

s.t. (t1j ;xj − a1; · · · ; trj ;xj − ar) �r〈2〉 0, j = 1, 2, · · · ,m

(t(r+1)j ;xj − ar+1; · · · ; t(r+s)j ;xj − ar+s) �s〈1〉 0, j = 1, 2, · · · ,m

(16)

where wij is the weight associated with the ith existing facility and the jth new facility for j =
1, 2, . . . ,m and i = 1, 2, . . . , r + s.

If interaction exists among the new facilities, then, in addition to the above requirements, we
need to minimize the sum of the (either Euclidean or rectilinear) distances between each pair of
the new facilities. Let 1 ≤ l ≤ m and assume that we are required to minimize the weighted sum
of the Euclidean distances between each pair of the new facilities x1,x2, · · · ,xl and the weighted
sum of the rectilinear distances between each pair of the new facilities xl+1,xl+2, · · · ,xm. In this
case, we are interested in a model of the form:

min
∑m

j=1

∑r+s
i=1 wij tij +

∑m
j=2

∑j−1
j′=1 ŵjj′ t̂jj′

s.t. (t1j ;xj − a1; · · · ; trj ;xj − ar) �r〈2〉 0, j = 1, 2, · · · ,m

(t(r+1)j ;xj − ar+1; · · · ; t(r+s)j ;xj − ar+s) �s〈1〉 0, j = 1, 2, · · · ,m

(t̂j(j+1);xj − xj+1; · · · ; t̂jl;xj − xl) �(l−j)〈2〉 0, j = 1, 2, · · · , l − 1

(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j)〈1〉 0, j = l + 1, 2, · · · ,m − 1

(17)

where ŵjj′ is the weight associated with the new facilities j′ and j for j′ = 1, 2, . . . , j − 1 and
j = 2, 3, . . . ,m.

5.2 Stochastic CERFLPs—An SMOCP model

Before we describe the stochastic version of this generic application, we indicate a more concrete
version of it. Assume that we have a new city with many suburbs and we want to build a hospital
for treating the residents of this city. Some people live in the city at the present time. As the
city expands, many houses in new suburbs need to be built and the locations of these suburbs will
be known in the future. Our goal is to find the best location of this hospital so that it can serve
the current suburbs and the new ones. This location must be determined at the current time and
before information about the locations of the new suburbs become available.

Generally speaking, let a1,a2, · · · ,ar1 ,ar1+1,ar1+2, · · · ,ar1+s1 be fixed points in R
n represent-

ing the coordinates of r1+s1 existing fixed facilities and ã1(ω), ã2(ω), · · · , ãr2(ω), ãr2+1(ω), ãr2+2(ω)
, · · · , ãr2+s2(ω) be random points in R

n representing the coordinates of r2 + s2 random facilities
whose realizations depends on an underlying outcome ω in an event space Ω with a known proba-
bility function P .

Suppose that at present we do not know the realizations of r2 + s2 random facilities, and that
at some point in time in future the realizations of these r2 + s2 random facilities become known.
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Our goal is to locate m new facilities x1,x2, · · · ,xm ∈ R
n that minimize the the following sums:

• The weighted sums of the Euclidean distance between each one of the new facilities and each
one of the fixed facilities a1,a2, · · · ,ar1,

• The weighted sums of the rectilinear distance between each one of the new facilities and each
one of the fixed facilities ar1+1,ar1+2, · · · ,ar1+s1,

• The expected weighted sums of the Euclidean distance between each one of the new facilities
and each one of the random facilities ã1(ω), ã2(ω), · · · , ãr2(ω),

• The expected weighted sums of the rectilinear distance between each one of the new facilities
and each one of the random facilities ãr2+1(ω), ãr2+2(ω) , · · · , ãr2+s2(ω).

Note that this decision needs to be made before the realizations of the r2 + s2 random facilities
become available. If there is no interaction between the new facilities, then the DMOCP model
(16) becomes the following SMOCP model:

min
∑m

j=1

∑r1+s1
i=1 wij tij + E [Q(x1; · · · ;xm, ω)]

s.t. (t1j ;xj − a1; · · · ; tr1j;xj − ar1) �r1〈2〉 0, j = 1, 2, · · · ,m

(t(r1+1)j ;xj − ar1+1; · · · ; t(r1+s1)j ;xj − ar1+s1) �s1〈1〉 0, j = 1, 2, · · · ,m

where Q(x1; · · · ;xm, ω) is the minimum of the problem

min
∑m

j=1

∑r2+s2
i=1 w̃ij(ω) t̃ij

s.t. (t̃1j ;xj − ã1(ω); · · · ; t̃r2j;xj − ãr2(ω)) �r2〈2〉 0, j = 1, 2, · · · ,m

(t̃(r2+1)j ;xj − ã(r2+1)(ω); · · · ; t̃(r2+s2)j ;xj − ã(r2+s2)(ω)) �s2〈1〉 0, j = 1, 2, · · · ,m

and

E[Q(x1; · · · ;xm, ω)] :=

∫

Ω
Q(x1; · · · ;xm, ω)P (dω).

where wij is the weight associated with the ith existing facility and the jth new facility for j =
1, 2, . . . ,m and i = 1, 2, . . . , r1+s1, and w̃ij(ω) is the weight associated with the ith random existing
facility and the jth new facility for j = 1, 2, . . . ,m and i = 1, 2, . . . , r2 + s2.

If interaction exists among the new facilities, then the DMOCP model (17) becomes the following
SMOCP model:
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min
∑m

j=1

∑r1+s1
i=1 wij tij +

∑m
j=2

∑j−1
j′=1 ŵjj′ t̂jj′ + E [Q(x1; · · · ;xm, ω)]

s.t. (t1j ;xj − a1; · · · ; tr1j;xj − ar1) �r1〈2〉 0, j = 1, 2, · · · ,m

(t(r1+1)j ;xj − ar1+1; · · · ; t(r1+s1)j ;xj − ar1+s1) �s1〈1〉 0, j = 1, 2, · · · ,m

(t̂j(j+1);xj − xj+1; · · · ; t̂jl;xj − xl) �(l−j)〈2〉 0, j = 1, 2, · · · , l − 1

(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j)〈1〉 0, j = l + 1, 2, · · · ,m − 1

where Q(x1; · · · ;xm, ω) is the minimum of the problem

min
∑m

j=1

∑r2+s2
i=1 w̃ij(ω) t̃ij +

∑m
j=2

∑j−1
j′=1 ŵjj′ t̂jj′

s.t. (t̃1j ;xj − ã1(ω); · · · ; t̃r2j;xj − ãr2(ω)) �r2〈2〉 0, j = 1, 2, · · · ,m

(t̃(r2+1)j ;xj − ã(r2+1)(ω); · · · ; t̃(r2+s2)j ;xj − ã(r2+s2)(ω)) �s2〈1〉 0, j = 1, 2, · · · ,m

(t̂j(j+1);xj − xj+1; · · · ; t̂jl;xj − xl) �(l−j)〈2〉 0, j = 1, 2, · · · , l − 1

(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j)〈1〉 0, j = l + 1, 2, · · · ,m − 1

and

E[Q(x1; · · · ;xm, ω)] :=

∫

Ω
Q(x1; · · · ;xm, ω)P (dω).

where ŵjj′ is the weight associated with the new facilities j′ and j for j′ = 1, 2, . . . , j − 1 and
j = 2, 3, . . . ,m.

5.3 Deterministic DERFLPs—A 0-1DMOCP model

We consider the discrete version of the problem by assuming that the new facilities x1,x2, · · · ,xm

need to be placed at specific locations and not in any place in 2- or 3- (or higher) dimensional
space. Let the points v1,v2, · · · ,vk ∈ R

n represent these specific locations where k ≥ m. So, we
add the constraint xi ∈ {v1,v2, · · · ,vk} for i = 1, 2, · · · ,m. Clearly, for i = 1, 2, · · · ,m, the above
constraint can be replaced by the following linear and binary constraints:

xi = v1 yi1 + v2 yi2 + · · · + vk yik,
yi1 + yi2 + · · · + yik = 1, and
yi = (yi1; yi2; · · · ; yik) ∈ {0, 1}k .

We also assume that we cannot place more than one facility at each location. Consequently, we
add the following constraints:

(1; y1l; y2l; · · · ; yml) �〈1〉 0, for l = 1, 2, · · · , k.
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If there is no interaction between the new facilities, then the DMOCP model (16) becomes the
following 0-1DMOCP model:

min
∑m

j=1

∑r+s
i=1 wij tij

s.t. (t1j ;xj − a1; · · · ; trj ;xj − ar) �r〈2〉 0, j = 1, 2, · · · ,m

(t(r+1)j ;xj − ar+1; · · · ; t(r+s)j ;xj − ar+s) �s〈1〉 0, j = 1, 2, · · · ,m

xi = v1 yi1 + v2 yi2 + · · · + vk yik, i = 1, 2, · · · ,m

(1; y1l; y2l; · · · ; yml) �〈1〉 0, for l = 1, 2, · · · , k

1T yi = 1, yi ∈ {0, 1}k , i = 1, 2, · · · ,m

If interaction exists among the new facilities, then the DMOCP model (17) becomes the following
0-1DMOCP model:

min
∑m

j=1

∑r+s
i=1 wij tij +

∑m
j=2

∑j−1
j′=1 ŵjj′ t̂jj′

s.t. (t1j ;xj − a1; · · · ; trj ;xj − ar) �r〈2〉 0, j = 1, 2, · · · ,m

(t(r+1)j ;xj − ar+1; · · · ; t(r+s)j;xj − ar+s) �s〈1〉 0, j = 1, 2, · · · ,m

(t̂j(j+1);xj − xj+1; · · · ; t̂jl;xj − xl) �(l−j)〈2〉 0, j = 1, 2, · · · , l − 1

(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j)〈1〉 0, j = l + 1, 2, · · · ,m − 1

xi = v1 yi1 + v2 yi2 + · · · + vk yik, i = 1, 2, · · · ,m

(1; y1l; y2l; · · · ; yml) �〈1〉 0, for l = 1, 2, · · · , k

1T yi = 1, yi ∈ {0, 1}k, i = 1, 2, · · · ,m

For l = 1, 2, · · · , k, let zl = 1 if the location vi is chosen, and 0 otherwise. Then, we can go
further, and consider more assumptions: Let k1, k2, k3, k4 ∈ [1, k] be integers such that k1 ≤ k2

and k3 ≤ k4. If we must choose at most k1 of the locations v1,v2, · · · ,vk2 , then we impose the
constraints:

(k1; z1; z2; · · · ; zk2) �〈1〉 0, and z ∈ {0, 1}k .

If we must choose at most k1 of the locations v1,v2, · · · ,vk2 , or at most k3 of the locations
v1,v2, · · · ,vk4 , then we impose the constraints:

(k1f ; z1; z2; · · · ; zk2) �〈1〉 0, (k3(1 − f); z1; z2; · · · ; zk4) �〈1〉 0, z ∈ {0, 1}k , and f ∈ {0, 1}.
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5.4 Deterministic ERFLPs with integrality constraints—A DMIMOCP model

In some problems we may need the locations to have integer-valued coordinates. In most cities,
streets are laid out on a grid, so that city is subdivided into small numbered blocks that are square
or rectangular. In this case, usually the decision maker needs the new facility to be placed at the
corners of the city blocks. Thus, for each i ∈ ∆ ⊂ {1, 2, · · · ,m}, let us assume that the variable xi

lies in the hyper-rectangle Ξn
i ≡ {xi : ζi ≤ xi ≤ ηi, ζi ∈ R

n,ηi ∈ R
n} and has to be integer-valued,

i.e. xi must be in the grid Ξn
i

⋂
Z

n. Thus, if there is no interaction between the new facilities, then
instead of solving the DMOCP model (16), we solve the following DMIMOCP model:

min
∑m

j=1

∑r+s
i=1 wij tij +

∑m
j=2

∑j−1
j′=1 ŵjj′ t̂jj′

s.t. (t1j ;xj − a1; · · · ; trj ;xj − ar) �r〈2〉 0, j = 1, 2, · · · ,m

(t(r+1)j ;xj − ar+1; · · · ; t(r+s)j ;xj − ar+s) �s〈1〉 0, j = 1, 2, · · · ,m

xk ∈ Ξn
k

⋂
Z

n, k ∈ ∆

If interaction exists among the new facilities, then instead of solving the DMOCP model (17),
we solve the following DMIMOCP model:

min
∑m

j=1

∑r+s
i=1 wij tij +

∑m
j=2

∑j−1
j′=1 ŵjj′ t̂jj′

s.t. (t1j ;xj − a1; · · · ; trj ;xj − ar) �r〈2〉 0, j = 1, 2, · · · ,m

(t(r+1)j ;xj − ar+1; · · · ; t(r+s)j;xj − ar+s) �s〈1〉 0, j = 1, 2, · · · ,m

(t̂j(j+1);xj − xj+1; · · · ; t̂jl;xj − xl) �(l−j)〈2〉 0, j = 1, 2, · · · , l − 1

(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j)〈1〉 0, j = l + 1, 2, · · · ,m − 1

xk ∈ Ξn
k

⋂
Z

n, k ∈ ∆

Finally, we mention that it is useful to consider the stochastic version of DERFLPs to obtain a 0-
1SMOCP model, and to consider also, parallelly, the stochastic version of ERFLPs with integrality
constraints to obtain an SMIMOCP model.

6 Concluding remarks

We conclude the paper by indicating possible directions for future research.
As indicated in Figure 1, the new classes of optimization problems DPOCPs, SPOCPs, DMIPO-

CPSs, DMOCPs, SMOCPs and DMIMOCPs introduced in this paper are natural extensions of
deterministic, stochastic and mixed integer second-order cone programs. It is interesting to note
that semidefinite programs and multi-order cone programs both include second-order cone programs
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as a special case. In §5 we presented an application leading to multi-order cone programs. It is
interesting to investigate other applicational settings leading to (deterministic, stochastic and mixed
integer) multi-order cone programs. Development of algorithms for such multi-order cone programs
which in turn will benefit from a duality theory is equally interesting and important. The authors
are currently exploring these research directions.
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